Adaptive Probabilistic Wavelet Shrinkage for Image Denoising

نویسنده

  • Aleksandra Pižurica
چکیده

We study a Bayesian wavelet shrinkage approach for natural images based on a probability that a given coefficient contains a significant noise-free component, which we call “signal of interest”. First we develop new subband adaptive wavelet shrinkage method of this kind for the generalized Laplacian prior for noise free coefficients. We compare the new shrinkage approach with other subband adaptive Bayesian shrinkage rules in terms of mean squared error performance. The results demonstrate that the new method outperforms existing Bayesian thresholding rules for natural images. We also extend the new shrinkage method to a spatially adaptive procedure. In the spatially adaptive version of the method, each coefficient is shrunk according to how probable it is that it presents a signal of interest, based on its value, based on a measurement from the local surrounding and based on the global statistical properties of the coefficients in a given subband. The procedure is fully automatic and fast. The new method yields the results that are among the best state-of-the-art ones and it outperforms much more complex recent related methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation

Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...

متن کامل

An Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising

MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...

متن کامل

A New Fuzzy-Based Wavelet Shrinkage Image Denoising Technique

This paper focuses on fuzzy image denoising techniques. In particular, we investigate the usage of fuzzy set theory in the domain of image enhancement using wavelet thresholding. We propose a simple but efficient new fuzzy wavelet shrinkage method, which can be seen as a fuzzy variant of a recently published probabilistic shrinkage method [1] for reducing adaptive Gaussian noise from digital gr...

متن کامل

Wavelet shrinkage versus Gaussian spatial filtering of functional MRI data

Objective The comparison between wavelet-based simultaneous multiscale denoising/hypothesis testing and single scale Gaussian spatial filtering followed by statistical testing of brain activation maps is carried out for a simple block-type visual paradigm EPI MRI experiment. Probabilistic wavelet shrinkage provides means to consistently combine multiresolution denoising and hypothesis testing i...

متن کامل

Image Denoising using Adaptive Thresholding in Framelet Transform Domain

Noise will be unavoidable during image acquisition process and denosing is an essential step to improve the image quality. Image denoising involves the manipulation of the image data to produce a visually high quality image. Finding efficient image denoising methods is still valid challenge in image processing. Wavelet denoising attempts to remove the noise present in the imagery while preservi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003